Lecture-11

o
AN
o
(Q\]
o
—i
>
p—
©
>
[
©
s
>
©
<
=
=

Proxy classes

Function overloading




Separating interface from
implementation

* Define member functions outside the class definition, so that

their implementation details can be hidden from the client
code

o
AN
o
(Q\]
o
—i
>
p—
©
>
[
©
s
>
©
<
=
=

* Divide the source code into two parts
A .cpp file having main()
A .h file having class definition

A .cpp file having member function definition




#include <iostream>
#include <cstring>

using namespace std: #include <iostream>
class employee #include “employee. 8
{ I/ class begins int main() ;
char name[80]; | ied: ch >
public: void putname(char *); void gethame(char *) ; { emp Oye860 e , Clic ;,%
private: double wage; name[80]; §
public: void putwage(double w); double getwage():; ted.putname(“Ted =
}: I/ class ends here Jones”);

ted.putwage(7500

ted.getname(name);

cout<<name<<" ma
$"<<ted.getwage(
<" per month.” ;

#include “employee.h”

void employee::putname(char *n)
{ strcpy(name,n); }

void employee::getname(char *n)
{ strcpy(n,name); }

void employee::putwage(double w) return O;
{ wage=w;}

} /I main closing
double employee::getwage() { return wage; }




Problem

* In this scenario, complete information hiding do not occur as
class’s private data is exposed in .h file

o
AN
o
(Q\]
o
—i
>
p—
©
>
[
©
s
>
©
<
=
=

* To avoid this — one can use the concept of proxy classes




Proxy classes

* Allows us to hide even the private data of a class from clients
of the class

o
AN
o
(Q\]
o
—i
>
p—
©
>
[
©
s
>
©
<
=
=

* Proxy classes are classes which provide interface to the
original class whose implementation details need to be hidden




, Example

Step 1. Make the class
in header file
“implementation.h”

class implementation

{ public:
implementation(int v)
{ value=v;}

void setvalue(int v) {
value=v;}

int getvalue() { return
value;}

private: int value;

5

Step 2. Make the proxy class in
another header file “interface.n”

#include “implementation.h”

class interface

{ public:
Interface(int);

void setalue(int);

Int getvalue();
~Interface();

private:
Implementation *ptr;

¥




rContd..

Step 3. Provide implementation
of interface class in
“interface.cpp”

#include “implementation.h”
#include “interface.h”
interface::interface(int v)

{ ptr=new implementation(v) ; }
void interface::setvalue(int v)

{ ptr->setvalue(v); }

int interface::getvalue()

{ return ptr->getvalue(); }
Interface::~interface()

{ delete ptr };

Step 4. Main program
(client of class) or
driver program
‘user.cpp”

#include “interface.h”
void main()

{
Interface k(5); Iint | ;
j=k.getvalue();
cout<<j;
k.setvalue(10);
j=k.getvalue();
cout<<j;

}

o
AN
o
(Q\]
o
—i
>
p—
©
>
[
©
s
>
©
<
=
=




Polymorphism
® Polymorphism (poly = many and morph = states or forms, etc.)

* A function is polymorphic if it may be applied to arguments of
different types.

void (int a,int b);
void (float c,float d);

o
AN
o
(Q\]
o
—i
>
p—
©
>
[
©
s
>
©
<
=
=




Polymorphism and
overloading

* Realized by using a set of mono-morphic
functions. Different code is used for different

types.

* Overloading means that the same operation is
implemented through different methods with
the same function name. For different types,
different implementations (methods) of the
same operation are executed.

o
AN
o
(Q\]
o
—i
>
p—
©
>
[
©
s
>
©
<
=
=




Example

#include<iostream>

void add(int a,int b)

{int c; c=a+b;
cout<<c; }

void add(float c,float
d)

{ float x; x=a+b;
cout<<c; }

void main()

{
add(5,10);

add(15.2,12.6);
}

o
AN
o
(Q\]
o
—i
>
p—
©
>
[
©
s
>
©
<
=
=




Class assignment

* Write a program that uses a function min to determine the

smaller of two arguments. Test the program using int, char
and float arguments.

o
AN
o
(Q\]
o
—i
>
p—
©
>
[
©
s
>
©
<
=
=




